Landfill Design and Construction
February 6-9, 2017 | Tampa, FL

CEUs: 3.2 | FBPE PDHs 0009293: 32.0; Provider 0004021 | Solid Waste Landfill: 16.0 CEUs | $795

Course Description:
This four-day intense course will introduce critical components of landfill design and help you to understand the "why" of modern landfill design. Topics covered include:

- Liner System Terminology
- Geosynthetic Materials
- Soils used in Landfills
- Lab and Field Tests
- Liner Construction
- Construction Quality Assurance
- Leachate Collection System
- Leakage Evaluation
- HELP Model
- Geotextile Filters
- Landfill Stability and Settlement
- Leachate Treatment
- Final Cover and Gas System Design

*Prerequisite: College level math & science

Course Instructor: Robert C. Bachus, Ph.D., P.E., D.GE.

Course Information:
Dawn Jenkins
djenkins@treeo.ufl.edu
(352) 294-3880

Course Registration Deadline:
3 Days Prior to Course

Registration is available online:
www.treeo.ufl.edu

Or through our registrar:
Taylor Greene
tgreene@treeo.ufl.edu
(352) 294-3874

Hotel Information:
Hilton Garden Inn Tampa North
13305 Tampa Oaks Blvd.
Temple Terrace, FL 33637

$147 single/double*
Reservations (813) 342-5000
*Reservation Deadlines: 1/13/2017
3/8/2017
Mention UF TREEO Center

Leachate and Landfill Gas Management System Design
April 5-6, 2017 | Tampa, FL

CEUs: 1.6 | FBPE PDHs 0009086: 16.0; Provider 0004021 | Solid Waste Landfill: 16.0 CEUs | $525

Course Description:
This two-day course focuses on the regulatory, analytical, design, and construction-related aspects of the two major by-products of modern landfills, namely landfill leachate and gas. Eight hours are devoted to each of these important topics. The presentations for each topic are organized similarly in that the important regulatory issues are first identified, followed by the introduction of analytical techniques for estimating and controlling leachate and landfill gas generation quantities. These background discussions form the necessary background to the hands-on engineering analyses and design presentations that follow. Relevant design steps and design equations will be presented and demonstrated and incorporated into a design example project. Following the presentations related to design, important construction, operation, maintenance, and monitoring topics will be presented. Each section will end with a presentation related to treatment technologies and potential beneficial reuse/recovery systems.

*Prerequisite: College level math & science

Course Instructor: Robert C. Bachus, Ph.D., P.E., D.GE.